If it's not what You are looking for type in the equation solver your own equation and let us solve it.
30x^2+130x-100=0
a = 30; b = 130; c = -100;
Δ = b2-4ac
Δ = 1302-4·30·(-100)
Δ = 28900
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{28900}=170$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(130)-170}{2*30}=\frac{-300}{60} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(130)+170}{2*30}=\frac{40}{60} =2/3 $
| 12x-63=135 | | 30^2+130x-100=0 | | 9/(x+1)=1+0.2x | | 13+3x=15x2+13+63x | | 16+4n=68 | | x–0,20,1=1 | | 15=2(1p+4)+3 | | 1/2+3.|-6+5x|=15/2+3 | | b^2=1/25 | | 2x=7×-7 | | -x=29-11 | | 8x+15-2x-(6x2)=33 | | X2-26x+153=0 | | x²-7x=0 | | 5X-6(-2x-7)=-60 | | 3n=n=2 | | .22=1.8(.14-y)+y | | -2x-1=2x | | 4x^2+3^2-1=0 | | 2.5=1/x | | .22=Yx1.8 | | 3t^2-4t=7 | | 49+3x-17=71 | | x+53+x+141=180 | | 10x+3+42+85=360 | | 6x-3=8x-1 | | 8x(3x+2)=680 | | 2x+3/4=x+3/ | | 5t-2=46-t | | X=y= | | 2(7-3)=y+24 | | 84+4x-15=107 |